STAR Year 1 Global Tracking

Presented by Lee Barnby (Kent State University) for STAR Collaboration Global Tracking Group

lbarnby@bnl.gov

Introduction

- Goals of Year 1 Global Tracking
 - Get best possible momentum fit
 - ◆ i.e. 3D fit including material effects
 - Allow a primary track population to be selected

Track refits

- Kalman <u>refit</u> of TPC tracks
 - Fitting only, not pattern recognition, that is done in TPC tracker
- Second fit including primary vertex as point on track

Kalman refit

- Fit Features
 - ◆ 3D fit
 - Accounts for multiple scattering (hard wired X₀ for P10) and energy loss in TPC gas (assumes pion mass)
 - Points may be removed in the smoother step
 - Full covariance matrix produced

Kalman fit details

- Code (FORTRAN) is from DELPHI, adapted to STAR by D.Liko and A. Saulys
- Co-ordinate system is:
 rφ, z₀, tanλ, ψ, q/p_T
- Calls to GEANT for material and dE/dx routines.

Primary track fit

- 2 x 2D fit
- Uses global track with hits as input
 - uses only those with DCA<3cm
 - this is meant as a loose initial cut
- Minimizes χ² for x-y (circle) and s-z (straight line) fits
 - ◆ Fits use points in first 180° of circle
- Result stored whatever it is, users decide final selection criteria (χ^2 of fit)
 - Fits which fail are however flagged

Next Steps

- Extend Kalman fit to include primary vertex. Will need limited geometry information.
- In Year 1 this is TPC only plus:
 - inner field cage 0.6% X₀
 - ♦ N₂ gas
 - ◆ Be beam pipe 0.3% X₀

